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A scheme is presented for the construction of the Fock matrix in LCAO-SCF calculations 
and for the transformation of basis integrals to LCAO-MCI integrals thai can utilize several 
symmetry unique lists of integrals corresponding to different symmetry groups. The algorithm 
is fully compatible with vector processing machines and is especially suited for paraliel 
processing machines. f) 1987 Academic Press, Inc. 

1. INTR~D~JCTI~N 

Calculation of ab initio configuration interaction (CL) wavefu~ct~o~s [I ] 
involves essentially three major computational steps prior to the actual CI 
calculations: 

(a) Generation of one-electron and two-electron integrals over asis 
functions (AOs) [2]. 

(b) Calculation of a wavefunction by the LCAB-SCF method [3]. 
(c) Transformation of the basis integrals in (a) to integrals over the LCA 

MOs from (b) 141. 

The use of point group symmetry makes the computation of two-electron 
integrals more efficient [S-9] in that only symmetry non-equivalent (unique 
integrals) have to be computed. Two approaches are commonly employed for the 
subsequent processing of the symmetry unique list of integrals: 

(1) A pre-transformation is carried out to integrals over symmetry- 
basis functions [5, 10, 1 l] (primitive symmetry orbitals, PSO). The resulti 
plete list of integrals, which is considerably smaller because of the many integrals 
which are zero by symmetry, is then utilized for (b) and (c) above. In some cases, 
however, the pre-transformation can be time-consuming and, in addition, the list of 
PS0 integrals has to be rearranged in canonical order for efficient processing in (c) 
[I1 1. 

(2) The symmetry-unique basis integrals are directly utilized in (b) and (c) 
above CS-8, 123. This approach is based on the “equal contribution theorem” [6] 
and is only applicable to symmetric integrands. 
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The above methods assume a single symmetry group for the complete system and 
do not recognize subsets of basis functions that may have higher symmetry which 
would result in additional gains during the integral evaluation. For example, in 
chemisorption studies of atomic/molecular adsorbates on surfaces, modelled by 
large clusters (e.g., -50 atoms), it is most economical to compute the basis 
integrals in two subsets: (a) those involving basis functions of the surface (large 
cluster), computed with the full symmetry of the cluster, and (b) those involving the 
adsorbate (including adsorbate-surface integrals), computed with the symmetry of 
the chemisorbed system. In this paper, we report a simple symmetry scheme that 
has the following features: 

(1) The scheme utilizes the full set of basis integrals which are effectively 
generated from sets of unique integrals corresponding to different symmetry groups. 
Canonical order is maintained. 

(2) The scheme is readily suited for vector processing, single instruction mul- 
tiple data (SIMD) machines and is especially advantageous for multiple instruction 
multiple data (MIMD) machines. 

2. GENERATION OF A UNIQUE LIST OF INTEGRALS 

The one-electron and two-electron electron integrals are given by 

and 

respectively, where {fi> = f is the set of basis functions (N in number). The integrals 
are invariant to an interchange of indices between the left and right and to a per- 
mutation of indices on the left and/or right. We define a symmetry group S = {R >, 
where the R are symmetry operations such that Rx R’ E {R} and R-’ E {R}. We 
further assume that RJ; --f +Jjj, i.e., an operation takes one function into another, to 
within a f sign [13]. The scheme for generating a unique list of integrals in 
canonical order is essentially equivalent to that reported by Dupuis and King [IS]; 
it is outlined below for the generation of two-electron integrals. The scheme for one- 
electron integrals is a trivial variation of that for two-electron integrals. 

Four loops are set up over i, j, k and 1, in that order, such that: i= 1 -+ N, 
j=i+N, k=i-+N and I=m+N (m=k if i#k, i??=jif i=k). This ensures the 
generation of a permutationally unique set of integrals in upper triangular form. It 
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is assumed in alli further discussion that the sets of integrals considere 
mutationally unique. 

The symmetry-unique list of integrals, henceforth referred to as the uniq 
defined as all integrals (ij//kl) such that if RiRjRkRE= i’j’k’l’ then .Ziyk.! 

R in the symmetry group, where the integral index Ziikl and pair 
efined as follows: 

Z, = L x min( i, j) + max( i, j), L>N 

and 

Z,, = L x min(Z+ Z,,) + max(Z,, Zk,), 

For the case of several symmetry groups {SK>, in number, the basis functions 
in subsets, G1, G, ,..., G,, with Gin Gj = 0, where the superset u f= I Gi 

is closed to the operations of symmetry groups S, and the full set UF= T G, = {fi ] 
has the overall symmetry of the system, S,. Q unique lists of two-electron integrals 
(IK] are generated, where I, is the set of unique integrals ~orre§~o~di~g to the sub- 
set of basis functions IJF=, Gi, transforming according to symmetry SK, in whit 
least one of the basis functions belongs to G,. This last constraint ensures that 
sets of integrals, including symmetry equivalent integrals, associated with the uni- 
que lists contain no members in common. 

To exemplify the above discussion, for adsorbates on large clusters, one woul 
consider two symmetry groups S, and S2 corresponding to the symmetr 
bare cluster and chemisorbed system, respectively. The basis functions are 
into two subsets: 6, = basis functions of the cluster and 6, = basis functio 
adsorbate. Two unique lists, I, and I,, of two-electron integrals are generated 
corresponding to the subsets G, and G, u G,, where at least one basis function 
belongs to G, in the latter case. A point to note is that if the set G2 (isolated adsor- 
bate) transforms according to a third symmetry S,, higher than S2, one can achieve 
additional economy by generating three unique lists, I,, I, and I,, where I, and 6, 
are generated with subsets G, and G2, respectively, and I2 is generated as before 
with the additional constraint that there also be at least one basis function that 
belongs to 6,. In practice, for a significant gain, the sets G, and 6, must be 
a~~ro~riate~y large. One may also generalize to many symmetry groups, though the 
integral generation scheme becomes more involved. In general, one may have 

’ 3 Q unique lists providing the sets of integrals, including symmetry eq~~va~~~~ 
mtegrals, associated with the unique lists contain no members in common. 

The operator h(l), for the one-electron integrals, can be expressed as 
2”( 1) + V(l), where T( 1) is the kinetic energy operator and V( 1) is the potential 
energy operator which includes nuclear-electronic interactions and o~e~~~~~t~o~ 

o-potentials, if any. Since V( 1) transforms according lo the overall symmetry 
system (symmetry group S,) only one unique list of one-electron integrals is 

generated with the complete basis LJ&, G,. 
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3. PROCESSING OF THE UNIQUE LIST OF INTEGRALS 

Applying all operations of a symmetry group S, to a unique integral (ijllkl) in 
the corresponding unique list Z, generates a set of integrals which are characteristic 
in that they cannot be generated from any other unique integral in Z, or in ZLZK 
(see the definition of uniqueness and Ref. [14]). Different symmetry operations 
acting on (ijllkl) may produce identical integrals or integrals differing only by a per- 
mutation of indices as discussed in Section 2. A convenient way to detect and 
bypass these redundant integrals is to associate a packed index with each unique 
integral defined by 

u=f2"-'P,, 
R 

where M is the number of symmetry operations in S, and P, = 1 for a new integral 
and P, = 0 for a redundant integral. The summation is over symmetry operations 
and P,= 1 corresponds to the unique integral (identity operation). Thus, the com- 
plete set of integrals associated with the unique list ZK may be generated by apply- 
ing the symmetry operations of S, successively to the list ZK and taking into 
account only those integrals with P, = 1 for symmetry operation R. Com- 
putationally, it is only necessary to determine if U/2R-1 is odd, then P, = 1, or 
even, then P, = 0. It also follows that the superset of all such sets of integrals, 
generated above, is the complete list of permutationally unique two-electron 
integrals. A similar argument holds for the one-electron integrals, although there is 
only one unique list corresponding to the symmetry group S,. 

While the unique lists of integrals are generated in canonical order, as defined in 
Section 2, the application of a symmetry operation R E S, transforms the set of uni- 
que integrals Z, E ((ij/lkZ)) into Z:, - { (i’j’//KZ’)}, w h ere the primed set is no longer 
in canonical order with respect to the unprimed set. In order to preserve canonical 
order, we define a transformation of the basis 

f~=Cf~lf~* . ..fRN)=(fi~...fN)R=fR 

for each operation R E S,, where f is the original basis used to compute the unique 
list Z,. The generated set Z&, when expressed in terms of the transformed basis fR, is 
identical to the unique list ZK, where the labels now correspond to the set f,, and is 
therefore in canonical order. 

The transformation and relabeling is illustrated in Table I for three basis 
functions related by a single C, two-fold rotation which interchanges basis 
functions 1 and 3. The unique list of two-electron integrals is shown along with the 
list of integrals generated by the C, operation. The latter are expressed in terms of 
the original basis labels and the labels of the transformed basis which is then iden- 
tical to the unique list. 
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TABLE 1 

Processing of the Symmetry Unique List of Integrals 

Symmetry Basis 
operations functions 

E 1 2 3 
c2 3 2 1 

Unique list 
of integrals 

P,=l 

Symmetry-generated integrals 

Original basis Transformed basis 
notation notation P C? 

1111 3333 1111 
1112 3332 1112 
1113 3331 1113 
1122 3322 1122 
1123 3321 1123 
1133 3311 1133 
1212 3232 1212 
1213 3231 1213 
1222 3222 1222 
1223 3221 1223 
1313 3131 1313 
1322 3122 I322 
2222 2222 2222 

Molecular orbital integrals 
v= v,i v,, 

Note. The symmetry operation Cz interchanges basis functions 1 and 3. Two-electron integrals are 
denoted by indices of basis functions and are generated as discussed in Section 2. The transformed basis 
corresponds to f,, = fCz. The intermediate Fock matrices F, and F,? are combined, as shown, to con- 
struct the Fock matrix F. The intermediate vectors of transformed LCAO-A?0 integrals, VE and Vc.z, 
are directly added together to obtain V (Section 4). 

The application of the algorithm to the construction of the Fock matrix [2], ten- 
tral to the LCAQ-SCF procedure, and to the transformation to LCA 
integrals is discussed below. In the discussion, the Fock matrix is denoted by 
the LCAO-MO integrals are denoted by a vector V. Each element of V corre 
to a MO integral (PQ//RS), where the indices represent MOs. The indices are 
ordered in a manner identical to those corresponding to basis integrals (Section 2). 
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4. THE FOCK MATRIX AND LCAO-MO TRANSFORMATION 

The Fock matrix element Fii is defined as 

The set {dm > is the set of LCAO-MOs [3], defined by 

Q = fC, where C is the coefficient matrix such that 

4i = 1 Ckifk. 

Substituting the expansion for di gives 

Fii = (i/3 + c c DkL(ijlkO - (iklljl)l, 
k I 

where D,, = C, Ck,,, C,T, = (CC+)!& is called the density matrix. In terms of per- 
mutationally unique integrals, an integral (ijlkl) contributes to all Fock matrix 
elements obtained from pairwise combinations of the four indices, and a per- 
mutational factor can be associated with each integral to account for permutational 
redundencies (e.g., (ijllkl) = (j//k/) if i=j). W e assume that this factor is incor- 
porated into the value of (ijllkl). 

From previous discussions, one may express the Fock matrix F= CsK F(S,), 
where F(S,) is the Fock matrix constructed with the full set of integrals associated 
with the unique set ZK. An important point to note is that the one-electron part of 
the Fock matrix, exclusively contained in F(S,) (Section 2), is constructed with the 
full set of one-electron integrals associated with the single unique list, corresponding 
to symmetry group S,. 

One can further express the F(S,) in terms of a set of partial Fock matrices 
F,JS,) for all R E S,, where FR(SK) is the partial Fock matrix constructed with the 
transformed basis f, utilizing the set I;, generated from Z, by the symmetry 
operation R, and taking into account only those integrals for which P, = 1. The 
density matrix corresponding to the transformed basis f, is D, = RtDR. Since the 
set ZK is identical to I, when expressed in the basis f,, one can repeatedly utilize the 
integrals in I, with P, = 1 along with the density matrix D, to construct F,JSK) 
for all RE S,. F(S,) is then obtained by transforming back the FR(SK) to the 
original basis, f, and taking the sum 

F(S,) = 1 RF&S,) R’. 
R 

This is shown in Table I, where FE is the Fock matrix constructed with the list of 
unique integrals, while Fc2 is the matrix constructed with the basis fc2, utilizing the 
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integrals in the unique list with P,, = 1. The final Fock matrix is obtained by 
adding F, and the transformed FC2. 

Turning to the transformation of basis integrals to integrals over the LCA 
OS, the element VPQRS is given by 

As in the case of the Fock matrix, we can express 

V,(S,) is constructed with the transformed basis f,, utilizing the integrals in I,, 
with P, = 1, and the C matrix corresponding to R (CR = R+C). Since the 
integrals do not depend on the labels of the basis functions, the VR(S,) do not have 
to be transformed prior to the summation as in the case of the FR(SK). 

We have implemented the symmetry algorithm in our LCAO-MO integral trans- 
formation program and general SCF program. The former program utilizes a O(P) 

LIST OF SYMME?RY UN!QlJE INTEGRALS 

BROADCAST 

DROCESSORS R,(C,) 

ALGORITHM FOR 
CONSTRUCTING FOCK 
MATRIX OR LCAO-WI 
TRANSFORMATION 

INTERMEDIATE FOCK 
MATRICES OR VECTORS 
OF LCAO-MO INTEGRALS Fl'V1 

R2(C2) 

F3/V3 . .;& 

GATHER 

FIG. 1. Parallel processing of unique integrals. Each processor is assigned to a symmetry operation 
R,, along with the corresponding LCAO-MO matrix C,. The algorithm is executed in parallel by the 
processors to construct the intermediate Fock matrices or vectors of transformed LCAO-MO integrals 
which are then combined. 
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algorithm [ 1 ] and vectorizes completely on the Cray-XMP computer whereas the 
SCF program vectorizes partially. Both programs are designed for SIMD/vector 
machines and loop over the symmetry operations so that a single list of symmetry 
unique integrals is processed repeatedly utilizing the C, generated for each sym- 
metry operation R. The algorithm is especially suited for parallel processing, as 
shown in schematic form in Fig. 1. A processor is designated to handle a symmetry 
operation so that the (FR}, or (VR}, are constructed in parallel utilizing duplicate 
lists of unique integrals or a single list which is broadcast to the various processors. 
The total time required to construct F, or V, is then comparable to the time for 
processing the unique list of integrals. 

5. SUMMARY 

A scheme is presented for the construction of the Fock matrix in LCAO-SCF 
calculations and for the transformation of basis integrals to LCAO-MO integrals 
that can utilize several symmetry unique lists of integrals corresponding to different 
symmetry groups. The scheme utilizes the complete set of integrals which are effec- 
tively generated by repeatedly processing the set of unique integrals in a manner 
such that the canonical order is preserved. The algorithm is fully compatible with 
SIMD/vector processing machines and is especially suited for parallel processing 
(MIMD) machines. 
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